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Abstract
Financial markets, being spectacular examples of complex systems, display rich correlation
structures among price returns of different assets. The correlation structures change drastically,
akin to critical phenomena in physics, as do the influential stocks (leaders) and sectors
(communities), during market events like crashes. It is crucial to detect their signatures for timely
intervention or prevention. Here we use eigenvalue decomposition and eigen-entropy, computed
from eigenvector centralities of different stocks in the cross-correlation matrix, to extract
information about the disorder in the market. We construct a ‘phase space’, where different market
events (bubbles, crashes, etc) undergo phase separation and display order–disorder movements. An
entropy functional exhibits scaling behavior. We propose a generic indicator that facilitates the
continuous monitoring of the internal structure of the market—important for managing risk and
stress-testing the financial system. Our methodology would help in understanding and foreseeing
tipping points or fluctuation patterns in complex systems.

1. Introduction

Even before we could completely recover from the long-lasting effects of the global economic downturn in
2007–08 [1], we are threatened by another impending economic crisis that has been triggered by the coron-
avirus (COVID-19) pandemic. The last crisis had brought us both predicament and hope! Predicament, since
the traditional theories in economics could not predict, not even warn, the near complete breakdown of the
global financial system. Hope, since one began to witness signs of change in economic and financial thinking,
including the very fact that there is deeper (and less understood) link between macroeconomics and finance
[2–4], which certainly merits more attention. Undoubtedly, the financial market serves as an ideal candidate
for modeling a complex system [5, 6], which is generally composed of many constituents of diverse forms and
nature but largely interconnected, such that their strong inter-dependencies and emergent behavior change
with time. Thus, it becomes almost impossible to describe the dynamics of the complex system through some
simple mathematical equations, and new tools and interdisciplinary approaches are much needed. Histori-
cally, financial markets have often exhibited sharp and largely unpredictable drops at a systemic scale—‘market
crashes’ [7]. Such rapid changes may be in some cases triggered by unforeseen stochastic events or exogenous
shocks (e.g., coronavirus pandemic), or more often, they may be driven by certain underlying endogenous pro-
cesses (e.g., housing bubble burst). New insights and concepts, such as systemic risk, tipping points, contagion
and network resilience have surfaced in the financial literature, prompting people to better monitor the highly
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interconnected macroeconomic and financial systems and, thus, anticipate future economic slowdowns or
financial crises.

As a spectacular example of a complex system [8, 9], the financial market [10–13] displays rich correlation
structures [14–19], among price returns of different assets, which have often been visualized as correlation-
based networks [20–22] with the identification of dominant stocks as influential leaders and sectors as com-
munities [23–25]. The correlation structures often change drastically, as do the leaders and communities in the
market, especially during market events like crashes and bubbles [7]. Therefore, the continuous monitoring
of the complex structures of the market correlations becomes very crucial and practical [18, 26, 27]. Recently,
Pharasi et al [18, 19] used the tools of random matrix theory to determine market states and long-term pre-
cursors to crashes, and confirmed that during a market crash all the stocks behaved similarly such that the
whole market acted like a single huge cluster or community. In contrast, during a bubble period, a particu-
lar sector got overpriced or over-performed, causing accentuation of disparities among the various sectors or
communities. However, there are no existing formal definitions of market crashes or bubbles; in fact, a certain
arbitrariness exists in declaring a market event as a crash or bubble. Hence, it is extremely difficult to detect
the signatures of these events so that we can timely intervene or prevent them.

In this paper, we extract information about the disorder in the market using the eigen-entropy measure [28],
computed from the eigenvector centralities (ranks) [25] of different stocks in the market, and show for the first
time that different market events (correlation structures) undergo phase separation [29, 30] in a constructed
‘phase space’. For the construction of the phase space we use transformed variables |H − HM| and |H − HGR|,
computed from the eigen-entropies [H, HM, HGR] following the eigenvalue decomposition of the correlation
matrices (C) into the market modes (CM) and the composite group plus random modes (CGR). We further
show that all market events, characterized by the [H, HM, HGR], are either ‘business-as-usual’ periods (located
toward the interior of the phase space) or ‘near-critical’ events (located at the periphery). Thus, one can see
movements in the order–disorder phases as market events evolve in the phase space, as observed in critical
phenomena of physical systems [31–33]. For robustness, we chose two different financial markets—the US
S & P-500 and Japanese Nikkei-225 over a 32 year period, and studied the evolution of the cross-correlation
structures and their corresponding eigen-entropies. One of the entropy difference measures, H − HM, displays
scaling [34] behavior with respect to the mean market correlationμ. Further, a functional of the entropy differ-
ence measure, −ln(H − HM), acts as a good gauge of the market fear (volatility index VIX) [35]. Analogous to
the black-hole entropy that reveals about the internal structure of a black-hole, our methodology with eigen-
entropy (measure of market disorder) would also reveal the nature of internal market structure. Further, the
phase separation would help us to label the events as anomalies, bubbles, crashes, or other interesting type of
events. It would also provide a few generic indicators that would facilitate the continuous monitoring of the
internal structure of the correlation epochs [18, 19, 26, 27, 36–38]. We anticipate that this new methodology
would help us to better understand the internal market dynamics and characterize the events in different phases
as anomalies, bubbles, crashes, etc, which could help in better risk management and portfolio optimization
[39]. This could also be easily adapted and broadly applied to the studies of other complex systems such as in
brain science [28] or environment [40].

2. Data and methodology

2.1. Data description
2.1.1. Price returns
We have used the adjusted closure price time series for United States of America (USA) S & P-500 index and
Japan (JPN) Nikkei-225 index, for the period 02-01-1985 to 30-12-2016, from the Yahoo finance database
(https://finance.yahoo.com/; accessed on 7th July, 2017). USA has data for N = 194 stocks and the period
02-01-1985 to 30-12-2016 (T = 8068 d). JPN has data for N = 165 stocks and the period 04-01-1985 to 30-
12-2016 (T = 7998 d). Note that we have included only those stocks in our analyses, which are present in the
data for the entire duration, and added zero return entries corresponding to the missing days. The list of stocks
(along with the sectors) for the two markets and the sectoral abbreviations are given in the SI (https://stacks
.iop.org/JPCOMPLEX/2/015002/mmedia) tables S1 and S2.

2.1.2. Volatility index
We have also used the daily closure volatility index (VIX) of the Chicago Board Options Exchange (CBOE)
from Yahoo finance (https://finance.yahoo.com/; accessed on 13th October, 2019) for the period 02-01-1990
to 30-12-2016, for T = 6805 d. It acts as a popular measure of the expectation of volatility in the stock market
implied by the S & P-500 index options. It is computed and displayed on a real-time basis by the CBOE, and
acts as the ‘fear index’ or the ‘fear gauge’ [35].
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Figure 1. Schematic diagram of the construction of phase space. Diagram explains the computation of eigen-entropies
[H, HM, HGR], starting from each of the correlation matrices C (four arbitrarily chosen dates). The correlation matrix C is first
decomposed to CM and CGR (see methodology), and then the eigenvector centralities {pi} are computed (from the corresponding
maximum eigenvalues for each of these matrices). The eigen-entropies are computed as −

∑N
i=1 pi ln pi. The coordinates

[H, HM, HGR] can be used to study the market evolution, or characterization of the market events in the phase space diagrams
(top and side views).

2.2. Methodology
2.2.1. Cross-correlation matrix
The returns series are constructed as ri(τ ) = ln Pi(τ) − ln Pi(τ −Δ), where Pi(τ ) is the adjusted closure price
of stock i on day τ , and Δ is the shift in days. Instead of working with a long time series to determine the cor-
relation matrix for N stocks, we work with a short time epoch of M days with a shift of Δ days. Then, the equal
time Pearson correlation coefficients between stocks i and j are defined as Cij(τ) = (〈rirj〉 − 〈ri〉〈rj〉)/σiσj,
where 〈. . .〉 represents the expectation value computed over the time-epochs of size M and the day ending on
τ , and σk represents standard deviation of the kth stock evaluated for the same time-epochs. We use C(τ) to
denote the return correlation matrix for the time-epochs ending on day τ (see e.g., figure 1). Here, we show
the results for M = 40 d with a shift of Δ = 20 d (other choices of M and Δ in SI figure S1).

2.2.2. Eigenvector centrality
The correlation matrix C can be used to produce a correlation-based network [17, 26, 41]. For any given
correlation-based network G := (N, E) with |N| nodes and |E| edges, let A = (ai,j) be the adjacency matrix,
such that ai,j = 1, if node i is linked to node j, and ai,j = 0 otherwise. The relative centrality pi score of node i
can be defined as:

pi =
1

λ

∑

v∈M(i)

pj =
1

λ

∑

j∈G

ai,jpj,

where M(i) is a set of the neighbors of node i and λ is a constant. With a small mathematical rearrangement,
this can be written in vector notation as the eigenvector equation A|p〉 = λ|p〉. In general, there may exist
many different eigenvalues λ for which a non-zero eigenvector solution |p〉 exists. We use the characteristic
equation |A − λ𝟙| = 0 to compute the eigenvalues {λ1, . . . ,λN}. However, the additional requirement that all
the entries in the eigenvector be non-negative (pi � 0) implies (by the Perron–Frobenius theorem) that only
the maximum eigenvalue (λmax) results in the desired centrality measure. The ith component of the related
eigenvector then gives the relative eigenvector centrality score of the node i in the network. However, the eigen-
vector is only defined up to a common factor, so only the ratios of the centralities of the nodes are well defined.
To define an absolute score one must normalise the eigenvector, such that the sum over all nodes N is unity, i.e.,∑N

i=1 pi = 1. Furthermore, this can be generalized so that the entries in A can be any matrix with real num-
bers representing the connection strengths. In order to enforce the Perron–Frobenius theorem, in the entire
work, we use ai,j = |Ci,j|2, where i, j = 1, . . . , N. In general, we can also consider higher powers n (any positive
integer, as discussed and shown in SI figure S2).

2.2.3. Eigenvalue decomposition of cross-correlation matrix
The correlation matrix C of size N × N will have N eigenvalues, say {λ1, . . . ,λN}, which may be arranged in
descending order of magnitude. Random matrix theory tells us that the asymptotic behavior of eigenvalues
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of large random matrices (whose entries are independent identically distributed random variables) follow the
Marčenko–Pastur distribution [42, 43]. By using the eigenvalue decomposition, we can thus filter the true
correlations (coming from the signal) and the spurious correlations (coming from the random noise) [14, 15,
44, 45]. The maximum eigenvalue λ1 = λmax of the correlation matrix C, corresponds to a market mode CM

that reflects the aggregate dynamics of the market common across all stocks, and strongly correlated to the
mean market correlation μ. The group modes CG capture the sectoral behavior of the market, which are next
few eigenvalues subsequent to the largest eigenvalue of the correlation matrix. Remaining eigenvalues capture
the random modes CR of the market. However, in practice it often becomes difficult to separate distinctly
(without arbitrariness) the group modes and random modes. In order to avoid this, we choose to decompose
the correlation matrix into the market mode CM and the composite group plus random mode CGR:

C = CM + CGR

= λ1|e1〉〈e1|+
N∑

i=2

λi|ei〉〈ei|. (1)

2.2.4. Eigen-entropy
Following the tradition in information theory, we use the eigen-entropy H = −

∑N
i=1 pi ln pi, since all the

normalised eigenvector centralities are non-negative (pi � 0) and
∑N

i=1 pi = 1, by construction. The eigen-
entropy may be described as kind of measure of disorder in the matrix A, where ai,j = |Ci,j|2; higher the
eigen-entropy, higher is the disorder in the matrix; the highest being in the case of Wishart ensemble that are
invariant under orthogonal transformations (WOE-Wishart Orthogonal Ensemble [46]), where H ∼ ln N. For
empirical correlation matrices, the eigen-entropy will be bounded by these two limits [0, ln N].

Similarly, corresponding to CM and CGR, we can compute HM and HGR, respectively. Thus, from each
cross-correlation matrix C(τ), we can use the eigenvalue decomposition to construct the set of matrices
[C(τ), CM(τ), CGR(τ )], and then construct the set of phase space coordinates [H(τ), HM(τ), HGR(τ )], as
illustrated in figure 1.

2.2.5. Market indicators
Traditionally, the market index returns r or the volatility index (VIX) are used to gauge the state of the market
and detect market crises. It has been observed that the eigenvalues of the cross-correlation matrix as well
as the mean market correlation μ can also act as indicators of the market state. In this paper, we propose
that the eigen-entropy measures also provide important information about the market. Most importantly, the
functional −ln(H − HM) acts as an excellent market indicator (as discussed below).

3. Results

3.1. Eigenvalue decomposition and eigenvector centrality
Figure 2 shows the eigenvalue decompositions of the correlation matrices, for: (Top to Bottom) normal, anoma-
lous, type-1 event, crash, and WOE. We have denoted the different matrices as: full correlation C, market mode
CM, group-random mode CGR, and displayed the results in figure 2 (Left to Right). The last column shows the
results for the ranked eigenvector centralities pi of the different correlation modes: full (C in black curve),
market mode (CM in turquoise curve) and group-random mode (CGR in gray curve). Evidently, the internal
structure of the cross-correlation matrix changes a lot with time [18, 19, 26, 27, 36–38] and causes the change
in the importance/hierarchy of the stocks (leaders) and block structures (communities). This further changes
the eigen-entropies [H(τ ), HM(τ ), HGR(τ)] that are used to create a phase space where each frame is repre-
sented by a point. As time evolves, different parts of the phase space are occupied and this allows us to identify
certain phases (restricted to some regions) and characterize the market events as crashes, etc (see supplemen-
tary videos 1, 2). Interestingly, for a normal period, the three curves are distinct and there are hierarchies in
ranks in all curves; for the market anomaly, all the three curves almost coincide; in the interesting type-1 period
(classified due to the position of the point in certain region of phase space), the curves corresponding to the
full and the group-random modes coincide while there is a strict hierarchy in the eigenvector centralities of
the market mode; for crash period, the curves corresponding to the full and the market modes coincide while
there is a strict hierarchy in the eigenvector centralities of the group-random mode; and for the WOE (without
internal structure), once again the curves corresponding to the full and the group-random modes coincide
while there is a strict hierarchy in the eigenvector centralities of the market mode.

3.2. Eigen-entropy and phases
As seen in figure 1, the events in phase space [H, HM, HGR] appear to be scattered on a complicated man-
ifold (created by MATLAB’s surface interpolation). However, there appears to be different phases. We thus
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Figure 2. Eigenvalue decomposition of the correlation matrices, and ranked eigenvector centralities. Plots showing the
correlation matrices: (Left to Right) full C, market mode CM, the group-random mode CGR and the ranked eigenvector centralities
{pi} of the different correlation modes: full (C in black curve), market mode (CM in turquoise curve) and group-random mode
(CGR in gray curve); stocks are arranged sector-wise (names abbreviated). (Top to Bottom) Matrices corresponding to normal,
anomalous, type-1, crash periods of the financial market, and a random matrix taken from WOE.

plotted the events, as shown in figure 3, in another phase space with transformed variables [H − HM, HM −
HGR, H − HGR]; the points are seen to lie on a flat surface (plane), with different phases (but not segregated).
The time-evolution of the transformed variables [H − HM, HM − HGR, H − HGR] show interesting dynam-
ics. The characterized events (figures 3(a) and (c)) are indicated as vertical lines in the time-evolution plots
(figures 3(b) and (d)). For frame-wise evolution, see SI supplementary videos 1, 2. We found that many anoma-
lies occurred just around the major crashes and intriguing patterns (termed as interesting events of type-1 and
type-2, belonging to two distinct regions in the phase space) appeared. The crashes occupy the region in the
phase space, where H − HM � 0. During the crashes, the H and HM almost touch the maximum disorder, ln N
(corresponding to the random WOE). The events like ‘Dot-com bubble’ that appear in the H − HGR � 0 axis
are termed as interesting events of type-1. The events which lie far away from the origin and both the axes, are
termed as interesting events of type-2, which include frames with exogenous shocks (like Hurricane Katrina,
etc). The events lying close to the origin are like anomalies happening right before or right after major crashes.

3.3. Phase separation, order–disorder movements and scaling
The above interesting features led us to try the transformed variables |H − HM| and |H − HGR| as indepen-
dent coordinates of phase space. Very interestingly, as evident from figures 4(a) and (b), the event frames
show clear phase separation—anomalies (green region), crashes (red region), normal (gray), type-1 (light
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Figure 3. Phase space plots and evolution of entropy differences. The 3D-plots of the phase space using entropy differences,
H − HM, H − HGR, and HM − HGR, for (a) S & P-500, and (c) Nikkei-225 markets. The event frames show different ‘phases’ of
market events: anomalies, type-1 events, type-2 events, crashes and normal. Note that all the points (market events) actually lie
on a plane (see surface-grid). For (b) S & P-500 and (d) Nikkei-225 markets, the entropy differences, H − HM, H − HGR, and
HM − HGR are evaluated from full, market and group-random modes to characterize and identify the different market events as
anomalies, type-1 events, type-2 events, crashes and normal periods.

Figure 4. Phase separation, order–disorder movements and scaling behavior. Panels (a) and (b) show plots of |H − HM| and
|H − HGR| for S & P-500 and Nikkei-225 markets, respectively, where the events show clear phase separation with order–disorder
movements (red dash-dot line connecting sequence of events around a crash, and blue dash-dot line connecting sequence of
events around a bubble). Panel (c) plots H − HM versus mean market correlation μ for both markets. (Inset: the same in
linear-logarithmic scale). The data-collapse indicates a scaling behavior. For all panels, the black stars represent WOE.

blue region) and type-2 (deep blue region), for both S & P-500 and Nikkei-225 markets. The order–disorder
movements—normal (at the central region) to near-critical phases (at the peripheral regions) are intriguing.

We have also studied in detail the sequence of six frames to follow the order–disorder movements (SI
figures S4 and S5) in cases of major crashes and bubbles (SI table S3). The similar nature of the order–disorder
movements in all the major crashes and Dot-com bubbles, nine events in USA and eleven events in JPN, cer-
tainly indicate robustness of the method. Moreover, we found that (H − HM) ∼ αexp(−βμ), where α and
β are constants (see figure 4(c) for USA and JPN). We found that the best-fit line yields α � 0.85 ± 0.03
and β � 10.22 ± 0.25; adjusted R2 = 0.95. Interestingly, the market event frames segregate into different por-
tions, interspersed by the normal events. This data-collapse on a single curve indicates a scaling behavior [34],
which implies that the co-movements in price returns for different financial assets and varying across coun-
tries are governed by the same statistical law—certainly non-trivial and striking behavior! This suggests that
markets have an inherent structure that remains pretty invariant—it has an average structure with fluctuations
(dispersion). The dispersion around the average behavior is slightly more in JPN than USA.

The phase properties are found to be pretty robust, though the phase boundaries are not very sharp (and
may depend on the parameters like window choice, shift, etc; SI figure S1and S2). In fact, once we characterize
the epochs (event frames) into different ‘phases’, we can actually create different ensembles of anomalies, type-
1 events, type-2 events, crashes and normal events. All frames in a certain phase have very similar properties
(hierarchies in ranks of stocks) and can be averaged over to represent a certain phase (figure 5). For each type of
event, we find that eigenvector centralities have distinct ranges of values and the sorted eigenvector centrality
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Figure 5. Averaged distributions of the eigenvector centralities, showing self-averaging properties. Histograms of the eigenvector
centralities pi for anomalies (green circles), type-1 events (light blue diamonds), type-2 events (blue squares), crashes (red
triangles) and normal (gray stars) and WOE (black stars), averaged over the respective ensembles for USA (top row) and for JPN
(bottom row). Histograms are evaluated using (a) and (d) full correlation matrices C and decomposed correlation matrices of (b)
and (e) market mode CM, and (c) and (f) group-random mode CGR.

Figure 6. Evolution of S & P-500 market. (Top to Bottom) Plots of |H − HM|, |HM − HGR| and |H − HGR|. The blue and pink
bands show time-periods over which the variables display high correlations (∼0.71 and ∼0.96, respectively).

curves have interesting features (hierarchies) in the eigenmodes. The eigen-entropies actually quantify these
features appropriately. For the S & P-500 and Nikkei-225 markets, we compute the histograms of the eigen-
vector centralities pi. Figure 5 shows the histograms (for S & P-500 (Top) and Nikkei-225 (Bottom)) for all the
characterized events (anomalies, crashes, etc), averaged over the respective ensembles, for the full/decomposed
matrices. For comparison, we also plot the results for the WOE (black stars). This helps us understand what
actually happens in the market, during these different types of events (characterized as phases) and what type of
hierarchies exist within the stocks’s eigenvector centralities. This would shed new light into the understanding
of formation of type-1 events, their development and crashes, etc. It is interesting to note that the properties
remain similar across different markets (USA and JPN) and across various periods of time.

One could also simulate (to be reported elsewhere) various correlation structures from a correlated WOE
with the mean correlation as tuning parameter. The non-trivial inherent market structure (sectors or com-
munities) plays a crucial role in the observed scaling behavior. We also observed from the evolution of the
variables |H − HM|, |HM − HGR| and |H − HGR| (figure 6), and other market indicators (SI figures S6 and S7)
that the market behavior has changed radically after 2002 (USA) and 1990 (JPN) corroborating the findings
of our earlier work [18].
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Figure 7. Evolution of S & P-500 market indicators. (Top to Bottom) Plots of index returns r, volatility index (VIX), mean market
correlation μ and the functional −ln(H − HM), for 1990–2016. Light blue bands are representative critical periods (see SI table
S3).

3.4. Generic market indicator
Finally, the functional −ln(H − HM) is found to act as a good gauge of the market characteristic (μ) and
market fear (VIX) (figure 7). There exist significant and non-trivial correlations between these variables, and
the other market indicators (SI figure S8). Hence, this functional−ln(H− HM) can serve as a very good generic
indicator.

4. Summary and discussions

We summarize the findings of our paper:

(a) We have proposed a methodology to extract information about the disorder in the market using the
eigen-entropy measures [H, HM, HGR], computed from the distributional properties of the eigenvector
centralities {pi} of correlation matrices (and eigenmodes) of asset returns. We emphasize here that our
eigen-entropy measure has a few advantages-uniquely determined, non-arbitrary, computational cheap
(low complexity), when compared to existing methods, e.g., structural entropy [26]. Note that the struc-
tural entropy (or any other network-based entropy measures) is very sensitive to the community structure
and construction of the network. An algorithm [24] involves identifying the group mode from the corre-
lation matrix, which may be hard and non-arbitrary (the boundary determined by the eigenvalues of the
correlation matrix is not sharp).

(b) We have shown that the different market events (corresponding to different correlation structures) like
crashes, bubbles, etc undergo phase separation in a constructed ‘phase space’. For the demonstration of
phase separation in a phase space, we used transformed variables |H − HM| and |H − HGR|, computed
from the eigen-entropies [H, HM, HGR] following the eigenvalue decomposition of the correlation matri-
ces (C) into the market modes (CM) and the composite group plus random modes (CGR). We reiterate that
this type of phase separation behavior has never been recorded for financial markets; it is very distinct from
the two-phase behavior in financial markets reported earlier by Plerou et al [47].

(c) We also showed that all market events, characterized by the [H, HM, HGR], are either ‘business-as-usual’
periods (located toward the interior of the phase space) or ‘near-critical’ events (located at the periphery).
We demonstrated movements in the order–disorder phases, for all the major crashes and bubbles (nine
events in USA and eleven events in JPN). Our results are pretty robust, as we found similar features in two
different financial markets—the US S & P-500 and Japanese Nikkei-225, and over a very long span of time
(32 years).

(d) One of the entropy difference measures, H − HM, displayed scaling behavior (data collapse) with respect
to the mean market correlationμ. The data collapse certainly suggests that the fluctuations in price returns
for different financial assets, varying across countries, economic sectors and market parameters, are gov-
erned by the same statistical law. This scaling behavior may motivate us to do further research as to
determine which market forces are responsible for driving the market or are important for determining
the price co-movements and correlations. In addition, this may lead to a foundation for understanding
scaling in a broader context, and providing us with altogether new concepts not anticipated previously.
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(e) We also showed that the functional of the entropy difference measure,−ln(H − HM), acted as a good gauge
of the market fear (volatility index VIX). This methodology may be generalized and used in other complex
systems (to be reported elsewhere) to understand and foresee tipping points and fluctuation patterns. Our
proposed methodology may further help us to understand the market events and their dynamics, as well
as find the time-ordering and appearances of the bubbles (formations or bursts) and crashes, separated
by normal periods.
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